Antioxidant properties of bovine liver protein hydrolysates and their practical application in biphasic systems


ARSLAN B., Xiong Y. L., SOYER A.

Journal of the Science of Food and Agriculture, cilt.104, sa.5, ss.2980-2989, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 104 Sayı: 5
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1002/jsfa.13190
  • Dergi Adı: Journal of the Science of Food and Agriculture
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Periodicals Index Online, Aerospace Database, Agricultural & Environmental Science Database, Analytical Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Communication Abstracts, Food Science & Technology Abstracts, INSPEC, Metadex, Pollution Abstracts, Veterinary Science Database, DIALNET, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.2980-2989
  • Anahtar Kelimeler: antioxidant activity, emulsion, lipid oxidation, liposome, liver protein hydrolysate, optimization
  • Erzincan Binali Yıldırım Üniversitesi Adresli: Evet

Özet

BACKGROUND: The influence of protein hydrolysate produced from bovine liver protein hydrolysate (LPH) by enzymatic hydrolysis, using Alcalase/Protamex (1:1), on lipid dispersions was investigated. LPH production was optimized to maximize the antioxidant activity (at 45, 50, and 55 °C for 12, 18, and 24 h). Different concentrations of LPHs (1, 3, and 5 mg/g) were added to emulsions and to liposomes. Lipid oxidation level and particle size of the lipid dispersions were monitored for 14 days of storage at 25 °C. RESULTS: Radical scavenging activity and reducing power were the highest at 45 °C after 24 h of hydrolysis. Electrophoresis pattern showed that the antioxidant activity was arising from the peptides with molecular weight around 10 kDa. Lipid oxidation occurred more rapidly in samples without LPH during storage. In emulsions, lower thiobarbituric acid-reactive substance and conjugated diene values were measured with increasing concentrations of LPH at day 14. Accordingly, particle size of the samples containing 5 mg/g of LPH was smaller than those of other groups. Phase separation was observed only in lecithin emulsion without LPH at day 14. The use of LPH in liposome limited the lipid oxidation and maintained the size of the particles independently from the concentration. CONCLUSION: This study highlights the potential applications of animal by-products as natural antioxidants in complex food systems. The results demonstrate that LPH, particularly when hydrolyzed at optimized conditions, can effectively inhibit lipid oxidation. The findings suggest that biphasic systems incorporating LPH have promising prospects for enhancing the stability and quality of food products. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.